
Rendering Implicit Surfaces
with Ray Marching
Thales Magalhães

Background: Sierpinski pyramid

Our Objective

To implement a real-time visualizer for

implicit surfaces using a technique known

as “ray marching” in Unity.

Background: Mandelbulb detail

Rendering

Ray Tracing

Direct computation of ray intersections

Pros:
● Supports acceleration structures

Cons:
● Requires explicit intersection formulas

● Doesn’t work for implicit surfaces in

the general case

Figure 1: Diagram of the ray tracing algorithm

Ray Marching

Function is sampled along the ray

Pros:
● Easily supports transparency and

participating media

● Works for implicits!

Cons:
● Resource intensive for high

resolutions

Figure 2: Diagram of the ray marching algorithm

Sphere Tracing

A variant of ray marching where the step size

depends on the distance to the surface

Cons:
● Relies on signed distance functions

(SDFs)

Pros:
● Much faster than uniform sampling

● SDFs enable a wide range of lighting

techniques (as we’ll see later)

Figure 3: Diagram of the sphere tracing algorithm

Figure 4: Number of steps taken encoded as colors
for an example scene

Our Approach

Figure 5: Diagram of our approach

● Sphere tracing via fragment shaders

● Mesh acts as domain

● Ray-marching performed

independently on each fragment

● Fragments are discarded in case of a

“miss”

● Front-face culling allows camera to

also render from inside the domain

Lighting

Normals

● A necessity for implementing pretty

much any lighting model

● Obtained by taking the gradient of the

SDF

● This can be done either analytically or

numerically

● Visible aliasing for distant surfaces:

can be reduced by taking finite

difference steps proportional to pixel

footprint (a.k.a. filtering)

Figure 6: Phong reflection model

Shadows

Shadow mapping:
● Limited resolution

● Already implemented by Unity

Ray-marched shadows:
● Unlimited resolution

● More expensive than shadow mapping

● Does not account non ray-marched objects

Soft Shadows

● Effect based on distances sampled

along the ray to the light source

● Very fast if already using ray-marched

shadows

Figure 7: Hard shadows

Figure 8: Soft shadows

Ambient Occlusion

● Calculated by taking a few samples

along the surface normal

● Not a screen-space effect

● Very fast when compared to physically

based simulations

Figure 9: Mandelbulb detail with (left) and without
(right) ambient occlusion

Our Approach

● Approximated normals with filtering

● Shadow maps + ray-marched shadows for direct lighting

● Ambient occlusion applied to environment mapping

Signed Distance Functions

● Distance functions for simple

primitives can be derived analytically

● Some provide exact distances while

others give a lower bound

Primitives
float Sphere(float3 p, float3 c, float r)
{
 return length(p - c) - r;
}

float Torus(float3 p, float r1, float r2)
{
 float2 q = float2(length(p.xz) - r1, p.y);
 return length(q) - r2;
}

float Tetrahedron(float3 p, float3 o, float s)
{
 p = (p - o) / s;
 float d = max(
 max(-p.x - p.y - p.z, p.x + p.y - p.z),
 max(-p.x + p.y + p.z, p.x - p.y + p.z));
 return s * (d - 1.0) / sqrt(3.0);
}

Figure 10: Examples of primitives Listing 1: Corresponding signed distance functions

Constructive Solid Geometry

● Distance functions can be combined

via union, intersection, difference, etc.

by using min and max operations

● Additionally, it is also possible to

perform smooth unions

Figure 11: CSG operations

Other Operations

Deformations:

● Displacement

● Twisting

● Bending

● Etc.

Figure 12: Example of deformations

Other Operations

Domain alterations:

● Symmetry

● Finite domain repetition

● Infinite domain repetition

Figure 13: Infinite domain repetition

Figure 14: Example using multiple effects (Ladybug,
by Inigo Quilez)

https://www.shadertoy.com/view/4tByz3

Animations

● Can be easily created by making the

distance function time-dependent

Figure 15: A simple animation created by changing
parameters over time

Distance Estimated Fractals

3D Fractals

Some 3D fractals can be described by using

primitive shapes and operations, e.g.:

● Sierpinski pyramid

● Menger sponge

Figure 16: Sierpinski pyramid rendering

Figure 17: Menger sponge rendering

3D Fractals

Many others cannot:

● Quaternion Julia sets

● Mandelbulb

● Mandelbox

● Kaleidoscopic IFS

● Hybrid systems

Figure 18: Quaternion Julia set rendering

Figure 19: Example of a Kaleidoscopic IFS

Distance Estimation

● These are so-called “escape time fractals”

● They are described by the convergence properties of iterative functions

● Similar to the Julia and Mandelbrot sets from 2D

● Not distance functions!

Distance Estimation

● We need a way to estimate the equivalent distance function

● Approximations exist for the 2D case

● They work by looking at how fast the function converges/diverges

● Calculated by taking a “running derivative,” which is also iterative

● These same approximations can be adapted for 3D

Distance Estimation

● Not exact!

● Most precise when near the surface

● Possible over-stepping especially when far away

● Solution: encapsulate fractal with a bounding volume

The Mandelbulb

● Based on the Mandelbrot set

● Extension to 3D by taking some artistic liberties

● Multiplication follows the same “geometric” properties as in the complex plane, i.e. magnitudes are

multiplied and angles added together in polar coordinates

● Squaring in the original formula becomes exponentiation by an integer constant α

Demo

Bibliography

● Distance Estimated 3D Fractals

● Rendering Worlds with Two Triangles with raytracing on the GPU in 4096 bytes

● Inigo Quilez’ Raymarching Articles

● Catlike Coding Unity Rendering Tutorials

http://blog.hvidtfeldts.net/index.php/2011/06/distance-estimated-3d-fractals-part-i/
https://www.iquilezles.org/www/material/nvscene2008/rwwtt.pdf
https://www.iquilezles.org/www/index.htm
https://catlikecoding.com/unity/tutorials/rendering/

References

● Ray Tracing Deterministic 3-D Fractals

● Exploring the Mandelbrot set

https://www.cs.drexel.edu/~david/Classes/Papers/rtqjs.pdf
http://pi.math.cornell.edu/~hubbard/OrsayEnglish.pdf

